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1. Introduction

The notion of a planar st-graph - i.e., a planar acyclic digraph embedded in the plane with

exactly one source, s, and one sink, t, both on the external face - was first introduced in the

planarity testing algorithm of Lempel et al.[18], and was fruitfully used in a number of applica-

tions, which include planar graph embedding [4, 13,27], graph planarization [12,20], graph

drawing algorithms [5,26,31], floor planning [1,29] planar point location [6, 17], visibility

representations [19,24,25,30], motion planning [8,23], and VLSI layout compaction [9,29].

Also, planar st-graphs are important in the theory of partially ordered sets since they arn. associ-

S. ated with planar lattices [15].

•~ .-' In this paper we further the investigation of these structures, and show that any planar st-

graph G admits two total orders (referred to as leftist and rightist orders) on the set V u E u F,

where V, E, and F are respectively the set of vertices, edges, and faces of G. Each of these two

orders yields a unique representation of G as a string of all its topological constituents. Graph G

can be dynamically modified by means of insertion of edges and expansions of vertices, and of

their inverses. These operations form a complete set, since any n-vertex planar st-graph can be

assembled or disassembled by an appropriate sequence of 0 (n) such operations.

The central result of this paper is that the string representation of the graph resulting from

one of the postulated updating operations is obtained as a syntactic transformation of the pre-

update string representation. This transformation consists of the execution of 0 (1) primitives,

% such as insertions, deletions, and swaps of substrings.

This general framework provides the theoretical underpinning and unifying viewpoint for

three significant applications: point location in a planar monotone subdivision, transitive-closure

query in planar st-graphs, and contact-chain query in convex subdivisions. In this paper we shall
only briefly illustrate (in Section 4) the connection between planar st-graphs and monotone sub-

divisions, since the point location problem in the latter has been treated earlier in exclusively

geometric terms and is reported elsewhere [22]. We simply recall that a monotone subdivision F

is a partition of the plane into regions that are monotone polygons, (i.e., polygons whose inter-

section with a fixed direction - e.g., horizontal - consists of at most one segment). The point

location problem in r consists of finding the region containing a query point q. The main result

of [22], reported here for completeness, is expressed by the following theorem:

I |1
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Theorem A: Let F be a monotone planar subdivision with n vertices. There exists an 0(n)-

space dynamic point location data structure with query time 0 (log2 n), which allows for

'e. insertion/deletion of a vertex in time 0 (log n) and insertion/deletion of a chain of k edges in

time 0 (log2 n +k) (worst-case).

A transitive-closure query for a planar st-graph G consists of testing for the existence of

(and/or reporting) a directed path between two vertices u and v of G. We are interested in a

graph G that can be dynamically modified.

The previous bestresults concern semi-dynamic versions of this problem (where only either

insertions or deletions of edges are allowed), and have 0 (1) query time, 0 (n) amortized update

time, and 0 (n2 ) storage [10, 11]. In this paper we establish the following result:

Theorem B: Let G be a planar st-graph with n vertices. There exists an 0 (n)-space dynamic

Sdata structure for the transitive-closure query problem on G, which supports queries and updates

in time 0 (log n) (worst-case).

6
Finally, we consider the problem of contact-chain query in convex subdivisions, which

arises in motion planning and computer graphics, and is described as follows [3, 8,23]. Given a

convex subdivision F of the plane (note that a convex subdivision is a special case of monotone

subdivision) and an (oriented) direction 0, we say that region r 1 pushes an adjacent region r 2 if

there exists a line in direction 0 which intersects r, and r 2 in that order. A contact chain in F is

a sequence of regions r1 ,r 2 , ,rk such that ri pushes ri 1 for i= 1,''" ,k-1 (see Fig. 1).

0 Assume that the regions of F are rigid objects, and we want to translate them one at a time in

S direction 0 avoiding collisions. Then the existence of a contact chain from r, to r 2 implies that

r 2 obstructs r I, i.e., r 2 must be translated before r1 .

• A contact-chain query consists of testing the existence of (and/or reporting) a contact chain

i' ,, between two regions of F. We are interested in answering contact-chain queries in a very gen-

eral dynamic environment where F can be updated by means of insertion/deletions of vertices

17 i and edges, and the direction 0 can be changed by elementary increments/decrements. (An ele-

mentary increment/decrement of direction is such that the push relation is inverted in exactly one

pair of adjacent regions.) Casting this problem in the planar st-graph framework, we establish
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~Figure 1 Example of contact chain.

qthe following result:

i Theorem C: Let F be a convex subdivision with n vertices. There exists an 0(n)-space

Sdynamic data structure for the contact-chain qeyproblem in I', which suprsqeisand

k. 4.

- updates in time 0 (log n) (worst-case).

i The rest of this paper is organized as follows. Section 2 provides preliminary definitions

andproperties ofplanar st-graphs.,nScto we present tetechnique frthe dynamic

Afor

*l maintenance of planar st-graphs. Applications to planar point location, transitive closure, andFi contact chains are described in Section 4.

a
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2. Planar st-graphs

Basic definitions on graphs and posets can be found in textbooks such as [2,7].

Let G be a directed graph, for brevity digraph, and v a vertex of G. We denote by deg(v)

the indegree of v, i.e. the number of incoming edges of v, and by deg+(v) the outdegree of v, i.e.

the number of outgoing edges of v. A source of G is vertex s with deg-(s) =0. A sink of G is

-. vertex t with deg'(t) =0. A transitive edge of G is an edge e = (u,v) such that there exists

another directed path from u to v consisting of at least two edges.

* ~ Definition 1 A planar st-graph is a planar acyclic digraph G with exactly one source, s, and

exactly one sink, t, which is embedded in the plane so that s and t are on the boundary of the

external face (see Fig. 2).

These graphs were first introduced in the planarity testing algorithm of Lempel et al.[18].
Several important properties of planar st-graphs are expressed by the following lemmas:

v6 = t

f2 V4

e6 e7
" f0s* v3 f3 e8 f5=t*

e ee4v2

\o S

. 5.

* Figure 2 Example of planar st-graph.

N M 5I.% 11 II11&,15150
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Lemma 1 [ 18] Every vertex of G is on some directed path from s to t.

Lemma 2 [25] For every vertex v of G, the incoming (outgoing) edges appear consecutively

around v (See Fig. 3.a).

Lemma 3 [25] For every face f of G, the boundary of f consists of two directed paths with

* common origin and destination. (See Fig. 3.b).

Lemma 4 [5, 16] G admits a planar upward drawing, i.e. a planar drawing such that every edge

(U, v) is a curve monotonically increasing in the vertical direction.

Let P be a poset (partially ordered set), where - denotes the partial order on the elements

of P. The Hasse diagram (also called covering digraph) of P is a digraph G whose vertices are

the elements of P, and such that (u,v) is an edge of G if and only if u<v and there is no other

element x of P such that u,<.x, v. G is acyclic and has no transitive edges. Hasse diagrams are

HIGH0)

LEFT (v) v RIGH-T (v)f

LOW~f
(a) (b)

6 .
Figure 3 (a) Example for Lemma 2; (b) Example for Lemma 3.

M ill
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usually represented by straight-line drawings such that for each edge (u,v) the ordinate of vertex

u is smaller that that of vertex v.

, A planar lattice is a poset whose Hasse diagram is a planar st-graph. Also, every plane st-

graph without transitive arcs is the Hasse diagram of some planar lattice. Several properties of

Splanar lattices are described in [ 15].

A linear extension of a poset P is a total order < on the elements of P such that for any two

elements u and v of P u<<v implies u < v. A linear extension corresponds to a topological sorting

of the vertices of the Hasse diagram of P. We say that P has dimension k if G admits k linear

extensions <1, <2, "",<k, such that u,,-v if andonlyifu<lv , u< 2 v u<kv,andkis

minimum.

*,, It is known that planar lattices have dimension 2 [2, p. 32, ex. 7(c)] [14, 15], which implies

the following lemma:

Lemma 5 [2, 14, 15] Let G be a planar st-graph with n vertices. There exist two total orders on

the vertices of G, denoted <L and <R, such that there is a directed path from u to v if and only

if u <L v and u <R v. Furthermore, orders <L and <R can be computed in 0 (n) time.

Lemma 5 is based on the fact that the underlying partial order of a planar lattice admits a

"complementary" partial order (see [15]). Figure 4.a shows a planar st-graph where each vertex

is labeled by its ranks in the orders <L and <R .

In the following definitions, the concepts of left and right refer to the orientation of the

,)'. edges. For example, the face to the left of an edge (u,v) is the face containing edge e which

appears on the left side when traversing edge (u,v) from vertex u to vertex v. Also, the reader

will find it convenient to visualize the planar st-graph G as being drawn in the plane with edges
* monotonically increasing in the vertical direction (see Lemma 4).

Given vertices u and v of G such that there exists a path from u to v, the set of paths from u

to v defines a planar st-graph with source u and sink v which is an induced subgraph of G. The

two paths that form the external boundary of this subgraph will be called the leftmost path and

rightmost path from u to v, respectively. For example, the external boundary of G consists of the

leftmost and rightmost paths from s to t.

:w
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(a) (b)

Figure 4 (a) Orders <L and <R on the vertices of a
planar st-graph; (b) A planar st-graph G and its dual G*

Let G be the digraph obtained from the dual graph of G as follows (see Fig. 4.b): (1) the

dual edge e of an edge e is directed from the face to the left of e to the face to the right of e;

(2) the external face of G is dualized to two vertices of G *, denoted s* and t*, which are

* incident with the duals of the edges on the leftmost and rightmost paths from s to t, respectively.

Vertices s* and t* can be thought of as being the "left" and "right external face" of G, respec-

tively. It is simple to verify that G* is a planar st-graph with source s* and sink t* [19,25].A Notice that G * might have multiple arcs.

Let V, E, and F denote the set of vertices, edges, and faces of G, respectively, where F has

elements s* and t* representing the external face. We will show that the orders <L and <R can

be extended to the set V u E u F, thereby giving a unique total order of all topological consti-

tuents of G.
I'.

0,
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First, for each element x of V u E u F, we define vertices LOW (x) and HIGH (x), and faces

LEFT(:.) and RIGHT (x), as follows:

, Ifx =v e V, we define LOW(v)=HIGH(v)=v. Also, with reference to Lemma 2 and Fig.

3.a, we denote by LEFT(v) and RIGHT(v) the two faces that separate the incoming and

outgoing edges of a vertex v~s,t. For v =s or v =t, we conventionally define LEFT(v) =s*

and RIGHT (v) = t.

(2) If x = e e E, we define LOW (e) and HIGH (e) as the tail and head vertices of e, respec-

tively. Also, we denote by LEFT(e) and RIGHT(e) the faces on the left and right side of e,

respectively.

(3) Ifx =fe F and f~s*,t *, we denote by LOW(f) and HIGH(f) the two vertices that are the

common origin and destination of the two paths forming the boundary of f (see Lemma 3
4..

° 
- •

and Fig. 3.b). Forf=s* orf=t*, LOW(f) and HIGH(f) are undefined. Also, we define
-. , ..

LEFT (f) =RIGHT(f ) =f.

Definition 2 We say that x is below y, denoted xly, if there is a path in G from HIGH(x) to

LOW(y). Also, we say that x is to the left of y, denoted x--y, if there is a path in G* from

RIGHT (x) to LEFT (y).

For example, in the planar st-graph shown in Fig. 2, we have e 2tv 4 , f 4TV4 , V5 -f 4 , and

e 1 -*f 2.

-a ; Lemma 6 Relations T" and -- are partial orders on V u E u F.

V Proof: A consequence of the fact the graphs G and G* are acyclic.

*¢' The following lemma shows that " and -4 are complementary partial orders.

5..-

Lemma 7 Let x and y be any two elements of V u E u F. Then one and only one of the follow-

ing holds:

* xly, ylx, x--y, y-4x.
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Proof: We prove the theorem for the case when y = v is a vertex of G. The other two cases can

be proved using similar arguments.

Let it 1 and it2 be the leftmost and rightmost paths from s to v, respectively. Also, let 7C3

and 7C4 be the leftmost and rightmost paths from v to t, respectively. These paths partition

1., V u E .. F into five subsets, one of which is v, and the others are defined as follows (see Fig. 5):

(1) A contains the vertices, edges, and faces enclosed by paths itl and it 2 , including the vertices

and edges of these paths, but excluding v;

(2) B contains the vertices, edges, and faces enclosed by paths n3 and t4 , including the vertices

and edges of these paths, but excluding v;

/~(3) C contains the vertices, edges, and faces to the left of paths rt1 and it3 , excluding the ver-

tices and edges of these paths;
'4'. t

I °:iI
t

I

S*S

Figure 5 Partiton of V u E u F with respect to vertex v.

A'%
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(4) D contains the vertices, edges, and faces to the right of paths 712 and 7r4 , excluding the ver-

tices and edges of these paths.

It is easy to verify that the edges of A are those of a planar st-graph with source s and sink

v, which is an induced subgraph of G, and, similarly, the edges of B are those of a planar st-

graph with source v and sink t. Notice that the vertices w of A are exactly those such that there is

a directed path in G from w to v, and analogously for the vertices of B.

Using simple duality arguments, we can show that the duals of the edges of C are those of a

planar st-graph with source s* and sink LEFT (v), which is an induced subgraph of G*. Simi-

lary, the duals of the edges of D are those of a planar st-graph with source RIGHT (v) and sink

t Notice tihat the faces f of C are exactly those such that there is a directed path in G * from f

to LEFT (v), and analogously for the faces of D.

By Lemma 1, there are directed paths from every vertex of A to v, and from v to every ver-

tex of B. Since for every edge or face x of A (B), both LOW(x) and HIGH (x) are in A (B), we

conclude that x e A implies xtv and x e B implies vtx. With similar arguments, we conclude

that .. e C implies x--v andx e D implies v-4x.

It remains to be shown that relations f and -* are mutually exclusive. Let x e A u B, i.e.,

either xtv or vi x. Suppose xtv; if x--+v, then there is a path in G* from RIGHT(x) to

LEFT (v). This implies that RIGHT (x)re C, a contradiction. An analogous contradiction is

reached if we assume that xtv and v--*x jointly hold. Finally, let x r C UD, i.e., either x--.)v or

; v--+x. Suppose x-*v; if xtv,then there is a path in G from HIGH(x) to v. This implies that

HIGH (x) e A, a contradiction. An analogous contradiction is reached if we assume that x.--->v

and viTx jointly hold.

Definition 3 We define relations <L and <R on VuE uF, as follows:

X<LY ,*xTyorx--+y; x<Ry ,:xfyory--x.

As a consequence of Lemma 7, we obtain:

P."



Theorem 1 The relations <L and <R on V u E u F are total orders.

We also note that there is a path in G from vertex u to vertex v if and only if u <L v and

S1 U <R v, since such path exists if and only if uTv.

Definition 4 We define the left-sequence of G as the sequence of elements of V u E U F, sorted

according to <L (leftist order). The right-sequence of G is defined similarly with respect to <R

(rightist order).

For example, the right-sequence of the graph of Fig. 2 is:

f5voe 3f4e2v I e4v2e8f3e5v3e7v4e iof2e6fIe 1 v5e9v6fo•

IWe will use a convenient string notation for such sequences. Namely, we use terminal

symbols (lower-case letters) for the elements of V u E u F, and variables (upper-case letters) for

substrings of the left- or right-sequence. For example, the left-sequence of the graph of Fig. 2

can be represented by the string

f0v oe 1Av 3e 6v 5e 10f2B

whereA=f e 2vle 5 and B =e 7f 3 e4f 4 e 3v 2e8 v 4 e9v 6f 5.

Z'J,.

.1"-*0 h°

6,
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3. On-Line Maintenance of a Planar st-graph

In this section we define a complete set of update operations on a planar st-graph, and show

that the restructuring of the orders <L and <R resulting from any such update operation can be

expressed by means of a simple string transformation. From this result, we derive an efficient

data structure for the on-line maintenance of the two orders of a planar st-graph.

The update operations on a planar st-graph are defined as follows:

INSERT (e,u,v,f;f1 ,f2): Add edge e = (u,v) inside face f, which is decomposed into faces

f1 and f2, with fI to the left of e and f2 to the right (see Fig. 6.a).

DELETE (e,u,v,fl ,f2;f): Delete edge e = (u,v) and merge the two faces fl and f2 form-

erly on the two sides of e into a new face f (see Fig. 6.a).

EXPAND (e,f,g,v;v1 ,v 2 ): Expand vertex v into vertices vI and v 2 , which are connected

by a new edge e with face f to its left and face g to its right (see Fig. 6.b).

CONTRACT (e,fg,vl,v 2 ;v): Contract edge e =(V1 ,V 2 ), and merge its endpoints into a

new vertex v. Faces f and g are to the left and right of e, respectively (see Fig. 6.b). Parallel

edges resulting from the contraction are merged into a simple edge.

Each operation is allowed if the resulting graph is itself a planar st-graph. It is interesting

to observe that operations EXPAND and CONTRACT are dual of INSERT and DELETE, respec-

tively, since performing one on G corresponds to performing the other on G*

We say that an edge e of G is removable, if operation DELETE (e,u,v,fl ,f2;f) on G yields

6%t a planar st-graph. We say that e is contractible if operation CONTRACT (e,f,g, v1 ,v 2 ;v) on G

yields a planar st-graph.

* Lemma 8 Each edge of G is either removable or contractible.

Proof: From Definition 1, it is easy to see that an edge e = (u, v) is removable if and only if

deg+(u)>2 and deg-(v)> 2, and it is contractible if and only if it is not a transitive edge.

* Assume that edge e =(u,v) is not removable. Then we have deg+(u)= 1 and/or deg-(v)= 1.

This implies that there is no other path in G from u to v, so that e cannot be a transitive edge.

Hence, edge e is contractible. Conversely, assume that edge e = (u,v) is not contractible. Then e
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V V

e f2
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U U

(a)

f v2

V e

(b)

Figure 6 (a) Operations INSERT and DELETE; (b)
Operations EXPAND and CONTRACT.

is a transitive edge, which implies deg+ (u) 2 and deg(v) 2, so that e is removable. 0

I'

A simple induction based on Lemma 8 yields:

., Lemmam

Lemma 9 Let Go be the trivial planar st-graph consisting of a single vertex. Any planar st-

graph with n vertices can be assembled starting form Go by means of 0(n) INSERT and

EXPAND operations, and can be disassembled to yield Go by means of 0 (n) DELETE and

CONTRACT operations.
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Now, we describe the transformation of the leftist order <L as a consequence of operations

INSERT (e,u,v,f;f,f2). Similar arguments hold for the order <R and for operation

,. EXPAND (e,fg,v;vpv 2).

Theorem 2 Let G be a planar st-graph, and G' be the graph obtained from G after the execution

of operation INSERT (e,u,v,f;fj ,f2). Depending on the relative orders of u, v, and f we have the

following transformations (left-sequence of G) => (left-sequence of G'):

(1) U<LV<Lf: AuBvCfD = AuBflevCf2D;

(2) f<Lu<LV: AfBuCvD =>Af Buef2 CvD;

(3) u<Lf<Lv: AuBfCvD =>AuBfjef 2 CvD;

(4) v<Lf<Lu: AvBfCuD =AflCuevBf 2 D.

Proof: The four cases are illustrated in Fig. 7. First, we observe that the union of the elements

of V u E u F associated with any one of the substrings A, B, C, and D, is a topologically con-

nected region of the plafie. The above regions, together with u, v, and f, form a partition of the

entire plane, which is determined by the leftmost path from HIGH (f) to t, the rightmost path

from s to LOW (f), and, depending respectively on each of the four cases, the following paths:

(1) the leftmost paths from u to t and from v to t (see Fig. 7.a,b);

., I(2) the rightmost paths from s to u and from s to v (see Fig. 7.c,d);

(3) the leftmost path from u to t and the rightmost path from s to v (see Fig. 7.e,f);

(4) the leftmost path from v to t and the rightmost path from s to u (see Fig. 7.g,h).

We discuss in detail Case 4 (see Fig. 7.g,h). The proof for the other cases can be derived with

similar arguments. The insertion of edge e causes every vertex in C to be connected with a

, *. directed path to every vertex of B. At the same time, the insertion of e breaks all the paths of G*

0 from the faces of B to the faces of C. Hence, we have the following relations:

A <L f1, f1 -C, C u, uTe, e Tv, v TB, B--f 2 , f2 <L D,

, where a substring represents compactly all of its elements. These relations yield immediately

the updated left-sequence. 0
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Theorem 2 shows that the update of the order <L is a simple syntactic transformation of

the left-sequence, consisting of at most four insertions/deletions of elements, and at most one

swap of substrings. Since operation DELETE is the inverse of operation INSERT, the order

before and after the deletion can be obtained by reversing the transformations given in Theorem

P l 2. The same situation arises with respect to operations EXPAND and CONTRACT. We can

summarize these results as follows:

Theorem 3 Let G be a planar st-graph, and G' be the graph obtained from G after update Fl,

where LI is one of INSERT, DELETE, EXPAND, or CONTRACT operations. Then the left-
sequence of G' can be obtained from the left-sequence of G bv means of at most four

insertions/deletions of elements, and at most one swap of substrings.

Theorem 3 allows us to design a simple yet efficient data structure for maintaining on-line

the orders of a planar st-graph G. We represent orders <L and <R by means of two balanced

Vbinary trees (such as red-black trees [28, pp. 52-53]), denoted TL and TR. The leaves of TL and

TR are associated with the elements of G, so that the left-to-right order of the leaves of TL gives

the left-sequence of G, and the left-to-right order of the leaves of TR gives the right-sequence of

G. From Euler's formula, trees TL and TR have 0 (n) nodes, so that their depth is 0 (log n).

Definition 5 An order-query on a planar st-graph G consists of determining, given elements x

and y of V u E u F, whether x <L Y or y <L x, and similarly with respect to order <R •

* Lemma 10 An order-query can be executed in 0 (log n) time.

Proof: The order-query algorithm is as follows. We access the leaves of tree TL associated with
. elements x and y, and we trace the paths Px and py from these leaves to the root of TL. Let node

* v be the lowest common ancestor of leaves x and y. We have that x <L Y if and only if the node

of px immediately preceding v is the left child of v. Since paths Px and py have length 0 (log n),
r.r ., we obtain the stated time bound.

.

'- Let T be a balanced binary tree. The left-to-right sequence of the leaves of T will be

denoted by A(T). Two basic operations on balanced binary trees are defined as follows:

6
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SPLIT (T, X;T 1,T 2): Construct from tree T two balanced binary trees T 1 and T 2 , such that

SA(T I) is the portion of A(T) from its leftmost leaf to X, and A(T 2 ) is the remaining portion of

VA(T). Tree T is destroyed by the operation.

SPLICE (T1 ,T 2 ;T): Construct from the balanced binary trees T1 and T 2 a new balanced

binary tree T such that A(T) is the concatenation of A(Tj) and A(T 2 ), with A(Tj) occurring to

the left of A(T 2 ). Trees T 1 and T 2 are destroyed by the operation.

Let m be the number of leaves of tree T. Standard techniques allow to perform each of the

above operations in 0 (log m) time [28, pp. 52-53].

J-j As regards the update operations on the planar st-graph G, the syntactic transformations on

the left- and right-sequence of G correspond to performing 0(1) insertions/deletions and

SPLIT/SPLICE operations on the trees TL and TR. Notice that the elements of V U E U F

invol,.:2d in the update identify the elements of the left-sequence that are inserted, deleted, or are

at the boundary of substrings to be swapped. For example, the algorithm for operation INSERT

is as follows:

Algorithm INSERT (e,u,v,f;f,f 2 )

(1) Determine the relative order of u, v, and fin the left-sequence of G by applying the order-

I ,query algorithm of Lemma 10. This determines which of the four cases of Theorem 2

applies.

(2) Acesleaves u ,adfi reT n eoet
Aces uvadfitreTanreoehem. Also, by means of at most three
SPLIT operations, construct from TL four trees associated with substrings A, B, C, and D.

(3) Destroy leaf f and create new leaves fI and f2.

(4) Assemble the updated tree TL from the leaves u, v, fi1 and f2, and from the trees associated

* with A, B, C, and D by a sequence of SPLICE operations and insertions. The correct left-

to-right order of these constituents is selected according to the specifications of Theorem 2.

(5) Perform the above Steps 1-4 on the right-sequence and tree TR.

0
Analogous algorithms can be formulated for the other update operations, and we have:

YW
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a Theorem 4 The restructuring of trees TL and TR after any one of the update operations INSERT,

DELETE, EXPAND, and CONTRACT can be performed in O(log n) time.

*.'
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4. Applications

The general framework for the maintenance of orders <L and <R in a planar st-graph can

be profitably used in three interesting applications: (i) dynamic point location in monotone sub-

divisions, (ii) dynamic transitive-closure query in planar st-graphs, and (iii) dynamic contact-

chain query in convex subdivisions.

In this paper we shall consider in detail only Applications (ii) and (iii). Application (i),

* dynamic planar point location in monotone subdivisions, has been discussed in detail in [22] in a

* purely geometric setting; here, we simply illustrate how the geometric problem can be reformu-

lated in terms of the planar st-graph framework, thus providing a unified viewpoint for these

- .~ problems.

0 A monotone subdivision F is associated with a planar st-graph G such that (see Fig. 8):

t

N. t.-

(a 
(b)/ 5

, .=(a) (b)

" Figure 8 (a) Monotone subdivision; (b) The planar st-
graph associated with the monotone subdivision of part (a).

, \.. .. .



(1) the vertices of G are the vertices of F, plus two special vertices s and t, associated with ver-

tices at infinity in the vertical direction;

(2) the arcs of G are associated with the edges of r, and oriented from the lower to the upper

endpoint; also G contains arcs connecting consecutive vertices of F at infinity.

INote that the vertices on the external boundary of G are the vertices of F at infinitity, plus s and
1.

An order on the regions of F (i.e., the faces of G) is obtained as a restriction of, say, <L.

This order readily induces a unique set of separating chains of F to which the query technique of

[17] is immediately applicable, while the results of Section 3 can be used as the theoretical

underpinnings for full dynamization of the method (monotonicity-preserving insertions/deletions

of edges and vertices). The performance of the resulting dynamic method is expressed by

Theorem A of Section 1.

4.1. Transitive-closure query

Recall that a transitive-closure query on a planar st-graph G consists of determining the

* existence of a directed path between vertices u and v of G. Such query is equivalent to test

whether both u <L v and u <R v so that, by Lemma 10, it takes 0 (logn) time. This establishes

Theorem B of Section 1.

A variant of query reports a path between u and v, and can be executed in time

0(logn+k), where k is the number of path edges. First, we query (in O(logn) time) the

existence of a path between u and v. Suppose that such path exists and, say, u Tv. We know that

the leftmost path from u to t and the leftmost path from v to t have at least one vertex in com-

mon. Resorting to a standard DCEL representation of the planar st-graph (see [21, pp. 15-17]),

we can trace each of these two paths. Alternating between them one edge at a time, we trace the

path between u and t forward from u, and the path between s and v backward from v. In this

traversal we mark each visited vertex. The process terminates when we reach a vertex for the

second time. If k is the length of the path to be reported, clearly at most 2k vertices have been

* .visited by the process. This establishes that the report-type query is executed in time

O (log n + k).

0M
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.I4.2. Contact-chain query

We can reformulate the problem of contact chains by assuming that the reference direction

0 is always the x-axis. In this equivalent setting, we have that region r1 pushes region r 2 if and

only if r, is to the left of r 2 . Hence, the transitive closure of the "push" relation is the same as

relation -4, and variations of 0 correspond to rotations of the subdivision.

We assume, with negligible loss of generality, that the slopes of the edges are all distinct.
(In the case of parallel edges, a virtual perturbation of their slopes achieves this simplifying con-

dition.) Thus, if we continuously rotate the subdivision, only one edge at a time becomes hor-

.'izontal. An elementary clockwise rotation from a given position of r is the minimal nonzero

% - clockwise rotation such that an edge becomes horizontal. An elementary counterclockwise rota-

tion is correspondingly defined. Thus, a full 21t-rotation of F is a sequence of elementary rota-

tions.

Since a convex subdivision F is also a monotone subdivision, we consider the planar st-

graph G associated with F, and its dual G *. It is easy to see that contact chains of rare in one-

to-one correspondence with paths in the graph G*.

We consider the following update operations on F:

INSERTPOINT(v,e;e 1 ,e 2): Split the edge e=(u,w) into two edges eI =(u,v) and

e 2= (v, w), by inserting vertex v.

REMOVEPOINT (v;e): Let v be a vertex of degree 2 whose incident edges, el = (u,v) and
e2 =(v,w), are on the same straight line. Remove v and replace e1 and e2 with edge e =(u,w).

IVSERTEDGE (e,u,v,r;rj,r2 ): Add edge e=(u,v) inside region r, which is decomposed

into regions r1 and r 2 , with rI to the left of e and r 2 to the right

REMOVEEDGE (e,u,v,r 1 ,r 2 ;r): Remove edge e =(u,v) and merge the regions r, and r 2

formerly on the two sides of e into region r. [ The operation is allowed only if the subdivision F'

so obtained is convex. ]

',* ~.ROTATE (8): Perform an elementary rotation of the subdivision r. The binary parameter

dindicates whether the rotation is clockwise or counterclockwise.

0
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To maintain information on the paths of G *, we use the theoretical framework developed in

,V Sections 2 and 3, and exchange the roles of G and G *. Operations INSERTPOINT and REMO-

" X. VEPOINT on F correspond to performing operations INSERT and DELETE on G*. Operations

INSERTEDGE and REMOVEEDGE on F correspond to performing operations EXPAND and
I- . CONTRACT on G*. This allows to perform in time O(logn) contact-chain queries and

insertions/deletions of vertices and edges.

With regard to the operation ROTATE, let e be the edge of F that becomes horizontal at

some time during the rotation. The effect of such rotation on G * is to invert the direction of the

dual edge e* of e (see Fig. 9). Hence, operation ROTATE on F corresponds to performing a

DELETE operation on G*, followed by an INSERT operation of the same edge in the reverse

orientation.

Let the azimuth of a directed edge be defined counterclockwise with respect to the x-axis,

so that it lies in the range [0,7c]. The edge e involved in the rotation can be identified by main-

taining a list of the edges of F sorted by increasing azimuth. Specifically, the edge involved in a

clockwise (counterclockwise) elementary rotation is the first (last) edge of this list, and is moved

7,2' to the end (front) of the list after the rotation. The list is implemented as a balanced binary tree,
'. so that edges can be efficiently inserted/deleted as specified by the operations INSERTPOINT,

REMOVEPOINT, INSERTEDGE, and REMOVEEDGE.

In conclusion, all the update operations have 0 (log n) time complexity, which establishes

Theorem C of Section 1.

~.
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